ชื่อเรื่อง

การตรวจติดตามแบคที่เรียในกระเพาะรูเมนของโคคั่วย

เทคนิคทางชีววิทยาโมเลกุล

ชื่อผู้เขียน

นางสาวพฤษพร กันขา

ชื่อปริญญา

วิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

ประธานกรรมการที่ปรึกษา

ผู้ช่วยศาสตราจารย์ คร.ปียะนุช เนียมทรัพย์

บทคัดย่อ

งานวิจัยนี้ศึกษาความหลากหลายของแบคทีเรียในกระเพาะรูเมนของโคโดยตรง โดยปราสจากการเพาะเลี้ยง ด้วยการโคลนยืน 16S ribosomal RNA (16S rDNA) จากนั้นนำลำตับ เบส 16S rDNA มาทำการวิเคราะห์ความเหมือนของลำคับเบสกับข้อมูลในฐานข้อมูล GenBank และการจัคกลุ่ม ซึ่งใช้โคพันธุ์โฮลสไตน์ฟรีเชี่ยน (Holstein Friesian) เป็นตัวแทนในการศึกษา เพื่อให้ได้ข้อมูลพื้นฐานสำหรับการออกแบบ 16S rDNA oligonucleotide primer และ TaqMan probe ที่ใช้ในการตรวจติดตามแบคทีเรียกลุ่มเป้าหมาย รวมทั้งหาความสัมพันธ์ระหว่างชนิดและ ปริมาณของแบคทีเรีย จากจำนวนโคลนทั้งสิ้น 69 โคลน พบว่ามีความเหมือนกับยืน 16S rRNA ของแบคทีเรียที่เพาะเลี้ยงได้ จำนวน 27 โคลน และขึ้น 16S rRNA ของแบคทีเรียที่เพาะเลี้ยงไม่ได้ จำนวน 42 โคลน เมื่อนำทั้งหมดมาวิเคราะห์หาความสัมพันธ์เชิงวิวัฒนาการ (phylogenetic tree) พร้อมกับแบคทีเรียที่เพาะเลี้ยงได้ 74 ชนิคจากฐานข้อมูล GenBank พบว่าในกระเพาะรูเมนของโค ประกอบไปด้วยแบคทีเรียจำนวน 7 กลุ่ม โดยประกอบด้วยกลุ่มใหญ่ 2 กลุ่ม คือ Low G+C Grampositive bacteria (LGCGPB) เป็นจำนวน 43.5% ของโคลนทั้งหมด และกลุ่ม Cytophaga-Flexibacter-Bacteroides (CFB) เป็นจำนวน 37.7% ของโคลนทั้งหมด และแบคทีเรียกลุ่มย่อย 5 กลุ่ม คือ Proteobacteria เป็นจำนวน 7.3% ของโคลนทั้งหมด, Rhodopirellula เป็นจำนวน 5.8% ของโคลนทั้งหมด, Victivellaceae bacterium/ Planctomycete เป็นจำนวน 2.9% ของโคลนทั้งหมด, Spirochaetes เป็นจำนวน 1.4% ของโคลนทั้งหมด และ Fibrobacteria เป็นจำนวน 1.4% ของโคลน ทั้งหมด

เมื่อทำการศึกษาบทบาทและหน้าที่ของแบคทีเรียในกระเพาะรูเมนแต่ละกลุ่ม พบว่ากลุ่ม LGCGPB และ CFB เป็นแบคทีเรียที่พบมากที่สุดในกระเพาะรูเมนซึ่งมีหน้าที่สำคัญใน การย่อยสลายเยื่อใยและสร้างกรคไขมันระเหยง่าย (volatile fatty acid; VFA) ส่วนกลุ่ม Proteobacteria เป็นแบคทีเรียกลุ่ม fumarate reducing bacteria ที่ส่งเสริมในการสร้างก๊าซมีเทนและ เป็นแบคทีเรียผลิตก๊าซมีเทนซึ่งเป็นผลเสียต่อสิ่งแวคล้อม คังนั้นจึงทำการคัดเลือกแบคทีเรีย 3 กลุ่ม

นี้มาทำการออกแบบ 16S rDNA primer และ TaqMan probe ที่มีความจำเพาะต่อแบคทีเรีย กลุ่มเป้าหมายคังกล่าวเท่านั้น เพื่อศึกษาการตรวงติคตามแบคทีเรียในกระเพาะรูเมนของโคโคยวิธี real-time PCR ในการให้อาหารโคที่มีอัตราส่วนอาหารขั้นต่ออาหารหยาบแตกต่างกัน 4 สูตร คือ 0:100, 20:80, 40:60 และ 60:40 เป็นระยะเวลา 10 วัน จากนั้นทำการเก็บตัวอย่างของเหลวใน กระเพาะรูเมนมาวิเคราะห์ปริมาณกรตไขมันระเหยง่าย และสกัดคีเอ็นเอเพื่อหาปริมาณแบกทีเรีย ทั้งหมด และแบคทีเรีย 3 กลุ่มคือ กลุ่ม LGCGPB, CFB และ Proteobacteria ในกระเพาะรูเมนของ โค ด้วยเทคนิค real-time PCR ในอาหาร 4 สูตรแตกต่างกันนี้ พบว่าอาหารสูตรที่ 1 ที่ประกอบด้วย ฟางข้าว 100% มีปริมาณ VFA มากที่สุด และมีปริมาณแบกทีเรียกลุ่ม Proteobacteria น้อยที่สุด และเมื่อปริมาณอาหารข้นเพิ่มมากขึ้น ปริมาณของแบคทีเรียกลุ่ม Protrobacteria ก็จะเพิ่มขึ้น เช่นกัน ส่วนปริมาณแบคทีเรียกลุ่ม LGCGPB และ CFB ไม่มีความแตกต่างกันมากในอาหารทั้ง 4 สูตร คังนั้นอาหารสูตรที่ 1 มีความเป็นไปได้ว่าเป็นอาหารสูตรที่มีการผลิตก๊าซมีเทนน้อยที่สุด เนื่องจากมีกลุ่ม Protrebacteria ที่สามารถผลิตก๊าซมีเทน ซึ่งพบน้อยที่สุดเมื่อเทียบกับอาหารสูตร ้อื่นๆ ที่ผสมอาหารข้น เพราะการผลิตก๊าซมีเทนมีปริมาณเพิ่มมากขึ้นในกระเพาะรูเมนเมื่อโคกิน อาหารที่มีพวกเยื่อใยต่ำ ตั้งนั้นจากผลงานวิจัยการศึกษานิเวศวิทยาของแบคทีเรียในรูเมนโดยวิธี ทางค้านชีววิทยาโมเลกุล ในการหาลำคับเบสของยืนส่วน 16S rRNA และการครวงติดตาม แบคทีเรียในกระเพาะรูเมนด้วยเทคนิค real-time PCR ครั้งนี้สามารถนำข้อมูลแบคทีเรียที่ได้เป็น ความรู้พื้นฐานเพื่อนำไปใช้ในการพัฒนาอาหารของโค และเพิ่มประสิทธิภาพการผลิตโคเพิ่มมาก ขึ้นต่อไป

Title Bacterial Monitoring by Molecular Biology

Techniques in Cow Rumen

Author Ms. Phuksaphorn Kanya

Degree of Master of Science in Biotechnology

Advisory Committee Chairperson Assistant Professor Dr. Piyanuch Niamsup

ABSTRACT

This research was conducted to study baeterial diversity in the rumen of ruminal fistulated Holstein Friesian cow directly in a culture-independent manner by cloned 16S ribosomal RNA (16S rDNA) followed by the analysis of 16S rDNA sequence to test the homogeneity analysis of DNA sequence with GenBank database and their groupings. The Holstein Freisian cows were used to attain database to design 16S rDNA oligonucleotide primer and TaqMan probe used to monitor target bacteria and to identify relationship between bacterial types and population in the rumen from a total of 69 clones. Results showed homogeneity with 16S rRNA clones was observed among 27 clones in cultured rumen bacteria and 42 clones in uncultured group. Analysis using a phylogenetic tree of all the clones together with 74 16S rDNA from GenBank, indicated that cow rumen contained seven groups consisting of two major groups: 43.5% of Low G + C Gram positive bacteria (LGCGPB); and 37.7% of Cytophaga-Flexibacter-Bacteroides (CFB). The remainder of the total clones were identified as Proteobacteria (7.3%), Rhodopirellula (5.8%), Victivallaceae bacterium/ Planctomycete (2.9%), Fibrobacteria (1.4%) and Spirochaetes (1.4%).

On the results of the study on the role and function of each group of the cow rumen bacteria, it was found that the LGCGPB and CFB which were mostly found, had an important function on diet fiber degradation in ruminants and production of volatile fatty acid (VFA). On the other hand, *Proteobacteria* was a fumarate reducing bacteria that promoted production of methane gas, a bad influence to the environment. This work was conducted to design a specific primer (16S rDNA) and TaqMan probe sets for the detection of LGCGPB, CFB and *Proteobacteria* group using a real-time PCR with a TaqMan system. Four dietary treatment ratios were mixed to concentrate diets to hay, 0:100, 20:80, 40:60 and 60:40. Rumen fluid

samples were taken to analyze VFA and extract DNA to measure total bacterial count including 3 major bacterial groups of LGCGPB, CFB and *Proteobacteria* in the cow rumen. It was found that Treatment 1 containing 100% hay had the highest amount of VFA but Iowest amount of *Proteobacteria*. Increasing amount of concentrate diet tended to increase the amount of *Proteobacteria* group as well. However, LGCGPB and CFB group showed no difference among all other treatments. Therefore, Treatment 1 showed greatest feasibility of reducing methane in the rumen because the presence of *Protebacteria* group was able to produce lowest amount of methane gas as compared to other treatments. Generally, methane is increased when cows are fed low fiber diet. Therefore, from this research study on bacterial monitoring of the diversity of rumen bacteria using 16S rRNA gene and real-time PCR technique, overall understanding will serve as basic knowledge in developing cow rumen feed and increasing production efficiency.